Chemistry of Natural Compounds and Bioorganic Chemistry

Asterosaponin P₂ from the Far-Eastern starfish *Patiria (Asterina)*pectinifera

A. A. Kicha, * N. V. Ivanchina, A. I. Kalinovsky, P. S. Dmitrenok, and V. A. Stonik

Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, 159 prosp. 100-letiya Vladivostoka, 690022 Vladivostok, Russian Federation. Fax: +7 (423-2) 31 4050. E-mail: piboc@stl.ru

A new polyhydroxylated steroidal glycoside, asterosaponin P_2 , was isolated from the Far-Eastern starfish *Pauria (Asterina) pecinifera*. The glycoside was identified as the (24R)-29-O-[2-O-sulfo- α -t-arabinofuranosyl]-24-ethyl-5 α -cholestane-3 β ,6 α ,8 β ,15 α ,16 β ,29-hexol Na salt.

Key words: starfish, Patiria pectinifera, glycoside, polyhydroxy steroid.

Unlike many other sea animals, starfishes contain highly oxygenated steroids encountered in free, sulfated, and glycosylated states. We studied repeatedly a difficultly separable mixture of highly hydroxylated steroid metabolites from Far-Eastern starfish *Patiria pectinifera* (=Asterina pectinifera Muller and Trochel)²⁻⁵ and isolated a new sulfated stigmastane glycoside from a water—ethanol extract of liver. We named the glycoside asterosaponin P_2 (1) because previously we isolated a glycoside called asterosaponin P_1 from the same starfish. Compound I was obtained and purified by column chromatography on Polychrom-1, Sephadex LH-20, silica gel, and Florisil and by high-performance liquid chromatography (HPLC) on the reverse phase Nucleosil C_{18} .

The structure of compound 1 was established by 1H NMR spectroscopy. The 1H NMR chemical shifts and the relevant spin—spin coupling constants of the protons of the steroid moiety of glycoside 1 virtually coincide with those found for miniatoside A isolated from the starfish *Patiria miniata* and having a stigmastane type aglycone with six hydroxy groups in positions 3β , 6α , 8β , 15α , 16β , 29.6 The signals of the protons of the monosaccharide residue in the 1H NMR spectrum of compound 1 were compared with the signals of the 5-O-methyl-2-O-sulfo- α -arabino-furanose residue in the spectrum of miniatoside A^6 and

HO H
$$R = SO_3^-Na^+(1), H(1a)$$

with the signals of the α -arabinofuranose residue in the spectrum of desulfated glycoside from the starfish *Oreaster reticulatus*. The signals of the HC(2'), HC(4'), HC(5'), and HC'(5') protons can clearly be seen in the ¹H NMR spectrum of compound 1. The chemical shifts and the spin—spin coupling constants suggest that the monosaccharide residue in glycoside 1 is represented by 2-O-sulfo- α -arabinofuranose. The signal of HC(1') is substantially overlapped by the signal of H₂O. The position of this signal was determined more precisely (δ 5.13) by heating the sample to 50 °C, which induced an upfield shift of the signal of H₂O. A homodecoupling experiment made it possible to determine the chemical shift and the spin—spin

Published in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1818-1820, October, 2000.

coupling constant of HC(3'). Upon irradiation of the HC(2') proton, the doublet of doublets due to HC(3') collapsed into a doublet. The data obtained indicate that the monosaccharide residue in glycoside 1 is 2-O-sulfo- α -arabinofuranose. The MALDI-TOF mass spectrum of 1 exhibits the [M-cation]⁻ peak at m/z 707, which confirms the presence of a sulfate group in compound 1. According to atomic-adsorption analysis, compound 1 contains an Na⁺ ion. Thus, asterosaponin P₂ (1) was identified as the sodium salt of 29-O-[2-O-sulfo- α -t-arabinofuranosyl]-24-ethyl- 5α -cholestane- 3β , 6α , 8β , 15α , 16β ,29-hexol.

Apparently, asterosaponin P_2 is a native form of stigmastane-type desulfated glycoside $\mathbf{1a}$, which was isolated in our previous study from the products of mild solvolytic cleavage of a mixture of steroid compounds from the same starfish. Indeed, solvolysis of glycoside $\mathbf{1}$ resulted in compound $\mathbf{1a}$, which was identified by direct comparison with the authentic sample (TLC, $|\alpha|_D$, 1H NMR). The arabinofuranose residue in compound $\mathbf{1}$ was assigned to the L-series because this had been established previously for compound $\mathbf{1a}$.

According to the data published for 29-hydroxysterols, the doublets corresponding to the protons of the $H_3C(26)$ and $H_3C(27)$ methyl groups overlap in the case of (24S)-configuration, whereas in the case of (24R)-configuration, the difference between the signals due to the $H_3C(26)$ and $H_3C(27)$ protons is ~ 0.03 ppm.⁸ The difference between the chemical shifts of the $H_3C(26)$ and $H_3C(27)$ protons in the spectra of glycoside 1 is 0.02 ppm; therefore, we assumed that the C(24) asymmetric center in asterosaponin P_2 has the R-configuration.

Experimental

¹H NMR spectra were recorded on a Bruker WM-250 spectrometer using SiMe₄ as the internal standard. The optical rotation was measured on a Perkin-Elmer 141 polarimeter. The MALDI-TOF mass spectra were run on a Biflex III mass spectrometer (Bruker, Germany, N₂ laser, 337 nm). The sample was dissolved in MeOH (1 mg mL⁻¹) and a 1- μ L aliquot was analyzed using 2.5-dihydroxybenzoic acid as the matrix. HPLC was performed on a Du Pont Model 8800 chromatograph (with a refractometer as the detector) using a column with Nucleosil C₁₈ (5 μ , 250×4.6 mm) and a Chromatopac C-R2A(X) integrator (Shimadzu, Japan).

The sorbents used in column chromatography were Polychrom-1 (Biolar, Latvia), Sephadex LH-20 (Sigma Chemical Co.), sifica gel L (40/100 μ m, Chemapol, Czech Republic), and Florisil (100–200 mesh, Koch-Light Laboratories Ltd., UK). Thin layer chromatography (TLC) was performed on glass plates (4.5×6.0 cm) with a fixed layer of Sorbphil silica gel (5–17 μ , Russia).

The starfishes were gathered in July 1998 in Posjet Bay of the Sea of Japan at a depth of 1-1.5 m and identified by Yu. M. Yakovlev (Institute of Marine Biology of the Far-Eastern Branch of the RAS, Vladivostok).

Isolation of glycoside 1. Starfish liver (190 g) was homogenized and extracted twice with 70% ethanol (3 mL g $^{-1}$) at room temperature and the extract was centrifuged. To remove lipids, the supernatant was extracted with benzene (1 mL per 3 mL of the supernatant). The aqueous-ethanolic layer was

concentrated in vacuo, the residue was dissolved in 0.5 L of water, and the solution was passed through a 7×10 cm column with Polychrom-1. The column was washed with water until the cluate was free from C1⁻⁻ ions and with 50% ethanol, and the ethanolic cluate was concentrated. The resulting total fraction of steroid compounds (1.5 g) was chromatographed successively on a 4×100 cm column with Sephadex LH-20 in the ethanol--H₂O system (2:1), a 4×18 cm column with silica gel in the chloroform--ethanol system (3:1 \rightarrow 1:1), and a 2×15 cm column with Florisil in the chloroform--ethanol system (2:1). This gave a fraction containing compound 1 (TLC, butanol--ethanol--water, 4:1:2, R_f 0.58). Then the fraction was purified by HPLC on a column with Nucleosil C_{18} ; the product was cluted with 65% aqueous methanol to give 3 mg of compound 1, $C_{34}H_{59}NaO_{13}S$, $\lceil \alpha \rceil_D + 12^{\circ}$ (c 0.1, MeOH).

¹H NMR (CD₂OD), δ : (aglycone) 0.84 (d, 3 H, Me(27), J=7 Hz); 0.86 (d, 3 H, Me(26), J=7 Hz); 0.92 (d, 3 H, Me(21), J=7 Hz); 1.01 (s, 3 H, Me(19)); 1.10 (s, 3 H, Me(18)); 2.40 (dd, 1 H, H₂C(7), J=3.5 Hz and 12.5 Hz); 3.46 (m, 1 H, HC(3)); 3.61 (m, 1 H, HC(6)); 3.74 (m, 1 H, HC(29)); 4.02 (dd, 1 H, HC(16), J=8 Hz and 2.5 Hz); 4.06 (dd, 1 H, HC(15), J=11 Hz and 2.5 Hz); (monosaccharide residue) 3.62 (dd, 1 H, HC(5'), J=12.5 Hz and 6 Hz); 3.74 (dd, 1 H, H'C(5'), J=12.5 Hz and 3.5 Hz); 3.94 (td, 1 H, H'C(4'), J=6.5 Hz and 3.5 Hz); 4.03 (dd, 1 H, H'C(3'), J=6.5 Hz and 2.5 Hz); 4.56 (d, 1 H, HC(2'), J=3 Hz); 5.13 (s, 1 H, HC(1')).

MS (MALDI-TOF), m/z ($I_{\rm rel}$ (%)): 707 [M = Na]⁺ (100%). Desulfation of glycoside 1. Compound 1 (1.5 mg) was heated for 2 h at 100 °C with 2 mL of a dioxane—pyridine mixture (1:1). The solvent was evaporated *in vacuo* and the dry residue was chromatographed on a column with silica gel (1.5×3 cm) in the chloroform—ethanol system (6:1) to give 1 mg of compound 1a, which was identified by direct comparison (TLC, $[\alpha]_D$, ¹H NMR) with a sample isolated in our previous study from the same startish.⁴

This work was financially supported by the Russian Foundation for Basic Research (Project No. 99-04-58854).

References

- L. Minale, R. Riccio, and F. Zollo, in *Progress in the Chemistry of Organic Natural Products*, Eds. W. Herz, G. W. Kirby, R. E. Moore, W. Steglich, and Ch. Tamm, Springer Verlag, Wien-New York, 1993, 62, 75.
- A. A. Kicha, A. I. Kalinovsky, E. V. Levina, V. A. Stonik, and G. B. Elyakov, *Tetrahedron Lett.*, 1983, 24, 3893.
- A. A. Kicha, A. I. Kalinovsky, E. V. Levina, V. A. Stonik, and G. B. Elyakov, *Bioorgan. Khim.*, 1983, 9, 975 [Sov. J. Bioorg. Chem., 1983, 9 (Engl. Transl.)].
- A. A. Kicha, A. I. Kalinovsky, and E. V. Levina. Khim. Prirod. Soedin., 1984, No. 6, 738 [Chem. Nat. Compd., 1984 (Engl. Transl.)].
- A. A. Kicha, A. I. Kalinovsky, E. V. Levina, Ya. V. Rashkes, V. A. Stonik, and G. B. Elyakov. Khim. Prirod. Soedin., 1985. No. 3, 356 [Chem. Nat. Compd., 1985 (Engl. Transl.)].
- M. V. D'Auria, M. Iorizzi, L. Minale, R. Riccio, and E. Uriarte, J. Nat. Prod., 1990, 53, 94.
- R. S. de Correa, R. Riccio, L. Minale, and C. Duque, J. Nat. Prod., 1985, 48, 751.
- 8. R. Riccio, M. V. D'Auria, M. Iorizzi, L. Minale, D. Laurent, and D. Duhet, *Gazz. Chim. Ital.*, 1985, **115**, 405.

Received January 25, 2000; in revised form May 3, 2000